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Solution 9

In the following the Initial Value Problem (IVP) refers to 2’ = f(t,z), z(tp) = xo, where f
satisfies the Lipschitz condition in some rectangle containing (¢g,x¢) in its interior, see Notes
for details.

1. Solve the (IVP) for f(t,z) = at(1 + 2?),a > 0, to = 0, and discuss how the interval of
existence changes as o and x( vary.

Solution. The solution is given by
z(t) = tan(tan ' 29 4+ at?/2) ,

where the tangent function is chosen so that tan : (—7/2,7/2) — (—o0,00). The (maxi-
mal) interval of existence is (—a, a) where

1

a=—(m—2tan" " xp) .

(07

We see that for fixed «, the interval shrinks as x( increases, and for fixed g, it shrinks too
as « increases. The maximal interval of existence depends on f,tg and z( in a complicated
manner.

2. Let z be a solution to the IVP on (¢, d), a subinterval of (a,b). Show that it extends to
be a solution on ¢, d].

Solution. Pick any sequence t,, 1 d. The sequence {z(t,)} belongs to [a, 5] and hence is
bounded. (Here we take R = [a,b] X [a, 8] as usual.) There is a subsequence {si} of {¢,}
so that x(sj) converges to some point 1. We claim limyq 2(t) = x1. For, we have

|(t) — x(s)| = I/ f(s,x(s)) ds| < M|t — s .

By letting k — oo, we get |z(t) — 21| < M|t — d|, from which we deduce limuq () = ;.
Now, we can extend z to up to d by defining x(d) = z; so that it is continuous up to d.
Moreover, letting k£ — oo in

Sk
o(si) —alt) = [ f(s,a()ds
¢
we get
d
o(d) ~alt) = [ fs.0(5)) ds
t
Since x is continuous at d, by the Second Fundamental Theorem

() — tim D =20

i 12— — f(d (@)

Hence z is differentiable at d (more precisely, left derivative exists) and satisfies the dif-
ferential equation.
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3. Let x;,i = 1,2, be two solutions to the same IVP on the subinterval I; of [a, b] satisfying
a < z;(t) < B. Show that x; is equal to xg on I N Is.

Solution. Let I = I; N I,. For ¢ = 1,2, we have
t
zi(t) = zi(to) + [ f(s,z(s))ds, tel.
to

By subtracting, as x1(tg) = x2(to),

t

£ (s,21(s)) = f(s,22)| ds

|1(s) — za(s)| ds

[21(t) —a2(t)] =

to

< L

to

Let us take t > . (The case t < tp can be handled similarly.) The function

H(t)z/ (21(s) — 22(5)| ds

to

satisfies the differential inequality
H'(t)<LH(t), telIt, It=In{t>ty}.

It satisfies H(to) = 0 and is always increasing. Moreover, it vanishes on It if and only if
x1 coincides with zo on IT. To show that H vanishes, we add an € > 0 to the right hand
side of this differential inequality to get H' < L(H + ). Writing it as (log(H 4+ ¢)) < L,
and integrating it to get

log(H(t) +¢) —loge < L(t —to) ,

or
H(t) <eellt=t)  tet .

Now the desired conclusion follows by letting ¢ — 0.

Note. This problem is essentially Proposition 3.12 in the revised Chapter 3.

4. Optional. Deduce Picard-Lindel6f Theorem based on the ideas of perturbation of identity.

Hint: Take a particular
t

Yy = f(t,$0)dt

to
in the relation z + ¥(z) = y.
Solution. Write the integral form of (IVP) as

t

o) =20~ [ (F(s.a(9) = Fsa)ds = [ fls.0)ds
Define Tz (t) = ¥(z) + y, where
W) =0~ [ (Fs,2(5)) = Fls.a0))ds

to
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Let
X ={zeClto—d,to+d]:|z(t) —zo| <b}

where o/ = min{a,b/M,1/L} as before. We first claim, when o’ < b/M, T maps X to

itself. Indeed,
¢

[Tx(t) —xol =| [ f(s,2(s))ds| < Mt| <b,

to

by our choice. Next, claim T is a contraction on X. We have

[Ty (t) — Taa(t)| = [W(21)(F) — W(x2)(B)| = / (f(s,21(s) = f(s,22(s)) ds| < L|t| < o

to

by our choice. Now, apply Contraction Mapping Principle to T" on X to get a unique fixed
point. It is the solution of our (IVP).

5. Show that the solution to IVP belongs to C**! (as long as it exists) provided f € C* for
k > 1. In particular, y € C* provided f € C*°.

Solution. It is an elementary fact and easy to show that the composition of two C*-
functions is again C*. Now, from (1) we see that y is C' if the RHS, that is, f(z,y(z))
is continuous. By induction, assuming now y is C**1 when f is C*. When f is C¥*1, it
is also C* and so by induction hypothesis y is C¥*!. The RHS of (1) is the composition
of twonC*+1-functions and hence is also C**1. It shows that the LHS g/ is C*¥*1, that is,
y € C*+2_ done.

6. Consider the IVP for second order equation:
2" = f(t,z,2'), x(ty) = x0, 2'(to) = 71 ,
where f € C(R), R = [a,b] X o, B] X [y, 6]. Assume that f satisfies the Lipschitz condition
[f(t 2, a') = f(ty, ) < Lz —y[+ 2" = y]) . (t2,2),(ty,y) eR.

Show that the IVP admits a unique solution in (tg — p, to + p) for some p > 0 by carrying
out the following steps.

(a) Show that the IVP is equivalent to solving
t s
x(t) = xo + x1(t — to) + / flr,z(r), 2’ (r)) drds .
to Jto

(b) Verify the space C[a, b] is complete under the norm
2l = llzlloo + 12l -

(c) Apply the Contraction Mapping Principle in a closed subset of (C1[a,d], | - [l1)-

Solution. (a) As the first order case, except now we integrate one more time.

(b) Let {x,} be a Cauchy sequence in this normed space. It means that both {z,} and
{z],} are Cauchy sequence in supnorm. By the completeness of C|a, b] in supnorm, there
are x,z € Cla,b] such that z,, and 2], converge to x and z uniformly. From the defining
relation

)=o) = [ i)
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we pass limit to get
z(t) —x(s) = /t z(r)dr ,
s
which shows that z = 2/, so {z,,} converges in the norm || - ||;.
(c) It is routine to verify, for each small p > 0, the set
X ={zeCto—pto+p: x(t) € [a, 8,2/ (1) € [,4]}

is a closed subset in C'[a, ] so it is also complete under || - ||;. As in the first order case,
we define

(T2)(t) = wo + 21t — to) + / : f(ra(r), 2/ (r)) drds |

and verify that when ¢ is small, it is a contraction from X to X and hence admits a fixed
point.

7. Show that there exists a unique solution h to the integral equation
W) =1+ / P R
x) = — T Se— ,
mJ) 11+ (z—y)? e
in C[—1,1]. Also show that h is non-negative.

Solution. Let X = C[—1,1] be the complete metric space we work on and set

1
(Th)(z) =1+ % /1 1+(Il_y)zh(y)aly.

It is easy to check that 7" is continuous on X. For hg, h; € C[—1, 1], we have

1
Tha(z) — Thi(z)] = |~ / () - M)y

) 114+ (x—y)

2
< ;th—hg”oo, Vo € [—1,1].

Hence T is a contraction on C[—1, 1], and a fixed point is ensured by Banach’s Fixed Point
Theorem.
Next we show that the fixed point A is non-negative. Notice that

1/1 ! d H tan(1l — x) + arctan(1l + ﬂ<1 €[-1,1]

— ———dy = —|arctan(l — z) + arctan x -, x€|- .

T ,11+(x—y)2y T -2 ’
From the def of h we have

1
lhlloo <1+ SliAlleo,

which implies [|h]|o < 2. It follows that

1t 1 1
M) >1—= | — = |hfleedy>1—=x2>0,
@ 21— [ oy > 15 x2 >

h is non-negative.

An alternate approach. We work on the space Y = {h € C[-1,1] : h(z) > 0,Vz}. From
the definition of 7', it is clear that 7" maps Y to Y. Since Y is easily shown to be a closed
set in C[—1, 1] (hence complete), we apply the Contraction Mapping Principle directly to
get a non-negative solution.



